Экономическая информатика лекция. Основные понятия экономической информатики Экономическая информация и информационные ресурсы Виды экономической информации Что изучает экономическая информатика структуру

Базовыми понятиями экономической информатики являются:

Информация и экономическая информация;

Задача и экономическая задача;

Данные - это сообщения об объектах и процессах, представленные в структурированной либо неструктурированной форме, на каком-либо материальном носителе(бумажные документы, магнитные диски). Для того чтобы данные могли быть обработаны компьютером, над ними должно быть выполнено ряд операций по их вводу: вначале они рассматриваются как результат наблюдений или измерений, затем они фиксируются на материальном носителе (бумажные документы, сигналы и т.д.) и, наконец, данные переносятся в компьютер, где структурируются и находятся в виде баз данных или других формальных средств.

В широком смысле информация определяется как сведения о той или иной стороне материального мира и происходящих в нем процессах. Под термином «информация» чаще всего понимают содержательный аспект данных, в отличие от данных (“data” – факт).

С точки зрения науки, информация - это мера устранения неопределенности в отношении исхода интересующего нас события. То есть понятие информации связывается с вероятностью осуществления того или иного события.

Информация не может существовать сама по себе, поэтому подразумевается наличие объекта (источника) и субъекта (приемника). Объект отражает, а субъект воспринимает информацию. Материальной составляющей процессов хранения, передачи и преобразования информации выступают носители информации, каналы связи, передатчики и приемники.

Информацию, прежде всего, отличает предметное содержание, она является одним из главных ресурсов жизнедеятельности общества, но, в отличие от природных ресурсов ее объем не убывает со временем, а наоборот только возрастает.

Выделяют следующие свойства информации :

1.Достоверность и полнота.

Информация достоверна, если она не искажает истинное положение вещей. Информация полна, если ее достаточно для понимания и принятия решений.

2.Ценность и актуальность.

Ценность информации зависит от того, какие задачи решаются с ее помощью. Актуальную информацию важно иметь при работе в постоянно изменяющихся условия нашего мира.

3.Ясность и понятность.

Информация становится ясной и понятной, если она выражена языком, на котором говорят те, кому предназначена информация.

По виду человеческой деятельности информация подразделяется на научную, техническую, производственную, управленческую, экономическую, социальную, правовую и тд. Каждая из областей человеческого знания оперирует «своим» видом информации. Экономика, экономическая деятельность оперирует экономической информацией, на которую распространены как общие свойства информации, так и свойства, отражающие ее характерные особенности, вытекающие из ее природы.



Экономическая информация – это информация, отражающая и обслуживающая процессы производства, распределения, обмена и потребления материальных благ. Экономическая информация служит инструментом управления и одновременно принадлежит к его элементам. В этом случае экономическая информация рассматривается как разновидность управленческой информации

Для экономической информации характерны:

· Большие объемы.

Качественное управление экономическими процессами невозможно без детальной информации о них. Совершенствование управления и возрастание объемов производства сопровождается увеличением сопутствующих ему информационных потоков.

· Цикличность.

Для большинства производственных и хозяйственных процессов характерна повторяемость составляющих их стадий и информации, отражающей эти процессы. Это свойство экономической информации позволяет многократно использовать однажды созданную программу для обработки данных.

· Многообразие источников и потребителей .

Данное свойство обусловлено многообразием производственной и хозяйственной деятельности людей.

· Удельный вес логических операций при обработке.

Логические операции обеспечивают соответствующее упорядочение данных в массивах (первичных, промежуточных, постоянных и переменных). Значительное место занимают такие виды работ как упорядочение, распределение, подбор, выборка, объединение.

Экономическая информация – характеризует производственные отношения в обществе (сведения эконом харак. о ресурсах, процессах управления, финансовых процессах). Свойства: алфав-цивр знаки, знач объем перем и пост знаков; дискретность, неоднородность, сохраняемость, ре-юзабельность, долгий срок хранения, изменение)

Экономическая информатика - это наука об информационных системах, используемых для подготовки и принятия решений в управлении, экономике и бизнесе.

Объектом экономической информатики выступают информационные системы, которые обеспечивают решение предпринимательских и организационных задач, возникающих в экономических системах (экономических объектах). То есть, объектом экономической информатики выступают экономические информационные системы, конечная цель функционирования которых является эффективное управление экономической системой.

Предмет: технология и этапы разработки систем автоматизированной обработки экономической информации и обоснование целесообразности такой обработки, функциональный анализ предметной области, алгоритмическое представление задачи и программная ее реализация.

Особенности: представление и отражение в виде перв и сводных документов, повторение стадий отработки информации, преобладание арифм и лог операций в процессе обработки

Анализ и проектирование бизнес-процессов. Функциональное моделирование, описывающее последовательность операций бизнес-процесса, а также моделирование используемых в нём данных.

Анализ и проектирование архитектуры информационных систем предприятия. Здесь модельный аппарат несколько шире, наряду с моделированием функций и данных, он включает в себя инженерные методы анализа и прогнозирования производительности ИС, статистический инструментарий, экономический анализ и т.д.

Совершенствование управления ИС решается методами теории менеджмента, включая методы исследования операций, теории организаций, логистики и т.д. Большое значение имеют методы и модели управления проектами.

Анализ и повышение экономической эффективности ИС используются разнообразные методы экономического анализа. В настоящее время речь идет о неоклассическом инструментарии, новой институциональной экономической теории и теории менеджмента.

15.Технология. Информационные технологии. Информационные процессы.

Технология - совокупность методов, процессов и материалов, используемых в какой-либо отрасли деятельности, а также научное описание способов технического производства.

Информационные технологии (information technology, IT) – широкий класс дисциплин и областей деятельности, относящихся к технологиям управления и обработки данных с применением вычислительной техники.

Информационный процесс - процесс получения, создания, сбора, обработки, накопления, хранения, поиска, распространения, использования информации.

Кодирование (запись на носитель), передача сигнала по каналу связи, декодирование (преобразование в код получ), обработка кода.

Характерными чертами современных ИТ являются:

Меньше трудозатрат на обработку, больше качества;

интерактивный характер обработки информации, широкий круг юзеров и коллективный характер работы с информационными и вычислительными ресурсами;

обеспечение единого информационного пространства ИТ, коллективная работа с информационными и вычислительными ресурсами на основе компьютерных сетей и систем телекоммуникаций;

поддержка многосредовости (мультимедийности) ИТ, безбумажной технологии.

Информационные технологии можно разделить на классы:

1. Общего назначения ИТ (работа с текстовыми документами, вычисления в электронных таблицах, ведение баз данных, работа с компьютерной графикой и т.п.).

2. Методоориентированные ИТ, обеспечивающие применение особых моделей и алгоритмов для решения задач (математического аппарата, статистики, управления проектами и т.п.).

3. Проблемно ориентированные ИТ, учитывающие специфику предметной области, информационных потребностей пользователей.

Информационные технологии развиваются в следующих направлениях: компьютерная техника; средства связи и коммуникации; программные средства; методология организации проектных работ по созданию ИС.

Развитие ИТ связано:

прогрессом в области аппаратных средств обработки данных (ЭВМ, носителей информации, средств коммуникации и связи и прочего), промышленных технологий производства элементной базы компьютеров;

развитием методов и инструментальных средств разработки программного обеспечения, способов хранения и поиска данных на машинных носителях;

16.Информационное общество. Информатизация общества в настоящее время. Концепция информационного общества сложилась в конце 20 века, она тесно связана с понятием постиндустриального общества, новой фазой в развитии всей нашей цивилизации. Отличительные черты информационного общества: Информация/знания – главный продукт производства; возрастание занятых в сфере ИТ, коммуникаций и сфере услуг; сплошная информатизация (Интернет, ТВ), глобализация информационного пространства; рост роли личности в управлении соц и эко отношений, развитие цифровых рынков, электронной демократии/государства

Проект «Информационное общество» РФ: электронное правительство, повышение качества жизни граждан, преодоление цифрового неравенства, безопасность, цифровой контент для музеев и архивов, развитие рынка ИКТ

Информатизация – это сложный социальный процесс, связанный со значительными изменениями в образе жизни населения. Он требует серьезных усилий на многих направлениях, включая ликвидацию компьютерной неграмотности, формирование культуры использования новых информационных технологий и др.

Движущей силой развития общества должно стать производство информационного, а не материального продукта. В информационном обществе изменяется не только производство, но и весь уклад жизни, система ценностей, возрастает значимость культурного досуга по отношению к материальным ценностям. В информационном обществе производятся и потребляются интеллект, знания, что приводит к увеличению доли умственного труда. От человека потребуется способность к творчеству, возрастает спрос на знания. Материальной и технологической базой информации общества, станут различного рода системы, на базе компьютерной техники и компьютерных сетей, информационной технологии, телекоммуникационной связи.

Информатизация общества - организованный социально-экономический и научно-технический процесс создания оптимальных условий для удовлетворения информационных потребностей и реализации прав граждан, органов государственной власти, органов местного самоуправления, организаций, общественных объединений на основе формирования и использования информационных ресурсов.

Цель информатизации – улучшение качества жизни людей за счет повышения производительности и облегчения условий их труда.

Основными критериями развитости информационного общества являются следующие:

Наличие компьютеров; ровень развития компьютерных сетей Владение информационной культурой, т.е. знаниями и умениями в области информационных технологий

Экономическая информатика (информатика от франц. information - информация и automatique - автоматический; буквально « наука об автоматизации обработки информации») - наука об информационных системах, применяющихся для подготовки и принятия решений в управлении, экономике и бизнесе, а также об экономике этих систем.

Экономическая информатика - новая дисциплина, возникшая во второй половине XX века в связи с быстрым развитием вычислительной техники и ростом её применения в экономике. В англосаксонских странах информатика называется computer science (буквально «наука о компьютерах»), а экономическая информатика - information systems (буквально «информационные системы»). Современная экономическая информатика - прежде всего, прикладная дисциплина, систематизирующая принципы разработки и эксплуатации информационных систем (далее - ИС), предназначенных для решения различных экономических задач. Таким образом, она находится на стыке собственно информатики (computer science ) и предметной областью управления организацией, для которой предназначались создаваемые специализированные системы. Даже в англосаксонских странах подобное специализированное прикладное знание в ряде случаев называется «информатикой», в частности, существуют биоинформатика и военная информатика.

Экономическая информатика имеет и общую область с экономической теорией. Эта общая область - экономика информации , дисциплина, изучающая экономические закономерности создания и распространения информации на рынках и в организациях. В экономической информатике она позволяет описать ценность информации и воздействие рынков информационных благ на ценность ИС.

Объект и предмет экономической информатики

Ядро экономической информатики включает, прежде всего, прикладное знание, необходимое для построения ИС в экономике и управлении организациями любой сферы - бизнесом, некоммерческими структурами и государственными органами. Под ИС в экономической информатике понимается система, предназначенная для сбора, передачи, обработки, хранения и выдачи информации потребителям с помощью вычислительного и коммуникационного оборудования, средств программного обеспечения и обслуживающего персонала .

Влияние информационных систем на экономику организаций, которые их внедряют и используют, описывается в терминах бизнес-процессов . Внедрение информационных систем создает новые ИТ-сервисы , которые, в свою очередь, меняют параметры бизнес-процессов организации, их производительность, качество и устойчивость. В результате этого, в случае успеха внедрения, возрастает текущая прибыльность и/или долгосрочная конкурентоспособность организации. Поэтому изучение бизнес-процессов коммерческих и некоммерческих организаций - одна из основных областей исследования экономической информатики. Эти исследования включают в себя изучение составляющих бизнес- процесса , его количественных и качественных характеристик, используемых им ИТ-сервисов , связь бизнес-процесса и его результатов со структурой организации и т.д. В результате этих исследований решается сразу несколько задач:

Наряду с бизнес-процессами, экономическая информатика исследует компоненты самой ИС : информационные технологии, приложения и управление. Информационные технологии - технологическая инфраструктура, обеспечивающая реализацию информационных процессов . Она включает в себя все виды компьютерного и телекоммуникационного оборудования, системное программное обеспечение, управляющее работой последнего, и инструментальные среды , поддерживающие работу приложений. Информационные технологии рассматриваются в экономической информатике как средства совершенствования бизнес-процессов и преодоления их ограничений. В то же время внедрение информационных технологий не ведет автоматически к улучшению бизнес-процессов, для этого оно должно сочетаться с внедрением приложений, изменением самих бизнес-процессов, повышением квалификации сотрудников предприятия и совершенствованием управления информационными системами . Важную часть информационных технологий составляют платформы - программные системы, позволяющие разрабатывать приложения.

Приложения - специализированные программы, непосредственно поддерживающие те или иные ИТ-сервисы в составе бизнес-процессов . Приложения могут быть отдельными продуктами (бизнес-приложения) или входить в состав тех или иных интегрированных систем управления (функциональные подсистемы). В настоящее время разработаны приложения для всех областей операционной деятельности предприятия и управления им - для закупок, производства, маркетинга и сбыта, технического обслуживания, управления кадрами, технологического развития, финансов, бухгалтерского учета и т.д. Разнообразие и сложность современных приложений вели к значительным трудностям при их совместной работе на одном и том же предприятии.

Длительное время эта проблема решалась путем создания крупных монолитных пакетов приложений, включающих себя вышеперечисленные приложения в качестве функциональных подсистем. В наше время развитие средств интеграции, основанных, прежде всего, на архитектуре СОА , привело к обратной тенденции, разработке более узко сфокусированных приложений, ориентированных на конкретные предметные области.

Например, компания SAP , крупнейший в мире производитель делового ПО, в настоящее время выпускает пакет приложений SAP Business Suite , включающий в себя ERP -систему SAP ERP , CRM -систему SAP CRM , систему управления жизненным циклом продукта SAP PLM , систему управления цепью поставок SAP SCM и систему управления взаимоотношениями с поставщиками SAP SRM . Следует подчеркнуть, что все перечисленное - разные приложения, интегрированные посредством сервисов СОА. Для поддержки сервисов СОА компания SAP создала собственную интеграционную платформу SAP NetWeaver . Аналогичные по назначению интеграционные платформы имеются у других лидеров рынка - Oracle Fusion Middleware у компании Oracle , IBM WebSphere у компании IBM и т.д. Каждая из этих платформ может работать не только с приложениями фирмы-изготовителя, но и с приложениями других фирм, что повышает гибкость создаваемых систем.

Наконец, управление информационными системами обеспечивает координацию между собой всех прочих компонентов ИС , а также координацию развития информационных систем с требованиями бизнеса. Управление корпоративными информационными системами включает в себя управление персоналом, пользователями, качеством, финансами и безопасностью, а также оперативное управление и управление развитием ИС . Тем самым, управление оказывается крайне важным компонентом ИС , а его совершенствование, соответствующее совершенствованию приложений и их технологического фундамента, - условием сбалансированного развития системы в целом. Согласно современным представлениям, управление ИС - это, прежде всего, управление ИТ-сервисами .

Отдельной задачей выступает анализ и проектирование архитектуры информационных систем предприятия. Здесь модельный аппарат несколько шире, наряду с моделированием функций и данных, он включает в себя инженерные методы анализа и прогнозирования производительности ИС , статистический инструментарий, экономический анализ и т.д. Особой проблемой является интеграция архитектуры ИС с архитектурой бизнеса и архитектурой организации, решаемая методами теории менеджмента.

Задача совершенствования управления ИС решается методами теории менеджмента, включая методы исследования операций, теории организаций, логистики и т.д. Большое значение имеют методы и модели управления проектами. В последнее время растет роль методов контроля проектов, обеспечивающих достижение запланированного экономического эффекта в ходе внедрения ИС .

Для решения задачи анализа и повышения экономической эффективности ИС используются разнообразные методы экономического анализа. В настоящее время речь идет о неоклассическом инструментарии, новой институциональной экономической теории и теории менеджмента. Каждый из подходов использует разнообразные методы, описанные в категории Экономическая теория . Эти же классы методов используются в экономическом анализе информации и рынков информационных благ.

Краткая история

Хотя предыстория информатики восходит, по меньшей мере, к 19 веку , история применения компьютеров в экономике началась лишь в 50-е гг. 20 века. С этого момента мы и будем отсчитывать историю экономической информатики.

В начальный период, в 50-е - 60-е гг., компьютер был редким и дорогостоящим ресурсом. Поэтому первой задачей экономической информатики стало повышение эффективности использования компьютера. Первыми шагами на этом пути стало создание операционной системы - пакета программ, организующего и обслуживающего вычислительный процесс на компьютере, и языков программирования высокого уровня, а также компиляторов с этих языков. Уже на этом этапе выяснилось, что экономические задачи, в отличие, например, от научных задач требуют намного более простых вычислительных алгоритмов, зато нуждается в средствах обработки больших объемов данных, имеющих сложную структуру. В результате был разработан язык COBOL , поддерживающий сложные иерархические структуры данных. Дальнейшим развитием этого подхода стала разработка специализированных платформ, позволявших создавать и поддерживать все более сложные базы данных. Эти платформы получили название систем управления базами данных (СУБД).

В 70-е - 80-е гг наступил следующий период истории экономической информатики, характеризующийся растущим проникновением компьютеров в бизнес. Параллельно усложнялись и становились все более разнообразными сами компьютеры и их инфраструктура. Появились новые классы компьютеров - мини-компьютеры и персональные компьютеры (ПК), локальные и глобальные компьютерные сети, новые классы программного обеспечения. В результате компьютеры автоматизировали уже не отдельные трудоемкие задачи, а целые функции предприятия, в том числе, столь важные, как планирование производства и закупок, бухгалтерский и управленческий учет, проектные работы и др. Для этих целей были разработаны новые классы приложений - системы MRP и, позже, MRP II , первые интегрированные системы управления производством, системы управления проектами и т.д. Это, в свою очередь, потребовало средств документирования соответствующих функций бизнеса и описания используемых в них данных. Результатом стали первые стандарты семейства IDEF , включая стандарт описания функций IDEF 0, стандарт моделирования данных IDEF 1X и ряд других.

В эти же годы экономическая информатика впервые столкнулась с так называемым «парадоксом производительности». Он состоял в том, что при растущих вложения бизнеса и государства в ИТ, никаких признаков роста производительности, связанного с этими вложениями, не наблюдалось. В чеканной форме эту проблему выразил Нобелевский лауреат Р.Солоу: «Мы видим компьютерный век везде, кроме статистики производительности». Несмотря на вызов Р.Солоу, в 80-е гг. никаких признаков позитивного влияния инвестиций в ИТ на производительность обнаружено не было.

Резко усложнившаяся вычислительная среда предприятия, в частности, взрывной ростиспользования персональных компьютеров, вызвала опережающий рост затрат на ИС. В связи с этим в управлении ИТ усилилось внимание к контролю затрат. Для решения этой проблемы компания Gartner Group разработала модель TCO , позволявшую учесть всю совокупность затрат на использование ИС на всем протяжении жизненного цикла последней. Хотя эта модель стала значительным прогрессом в учете затрат на ИТ, она имела ряд недостатков, вследствие чего её широкое использование в ряде случаев приводило к неверным выводам. Крупнейшей среди подобных ошибок стала инициатива разработки сетевого компьютера, специально предназначенного для снижения TCO корпоративных ИС . Целый ряд крупных производителей ПК выбросили на рынок свои сетевые компьютеры, не имевшие никакого успеха. Интересно, что позже, в 2000-е гг. идеи сетевого компьютера были вновь востребованы и на этот раз с гораздо большим успехом. Тем не менее, в 80-е гг. проект оказался преждевременным.

90-е гг. ознаменовались двумя крупными техническими новшествами - переходом на т.н. архитектуру «клиент-сервер» и широким распространением интернета. Новая архитектура ИС означала переход к распределенным приложениям, одна часть которых выполняла обработку данных как таковую и располагалась на специально выделенных для этого компьютерах (серверах), а другая обеспечивала передачу запросов серверам, получение ответов от последних и представление результатов запросов конечному пользователю (клиент). Именно по этой схеме была организована электронная почта, работа с базами данных, а также предоставление доступа в интернет.

Интернет стал другой, еще более значимой революцией 90-х гг. Следует отметить, что инфраструктура интернет в виде сетей передачи данных и глобальных компьютерных сетей была создана значительно раньше (первые сегменты сети ARPAnet , предшественника интернета, были созданы еще в 1969 г.), массовое использование интернета индивидуальными пользователями и корпорациями пришлось именно на 90-е гг. Это было обусловлено появлением «всемирной паутины» WWW - сети гиперссылок, связывавших массивы информации («страницы»), находящиеся как на одном сервере, так и на разных серверах. В это же время появились поисковые машины, позволявшие пользователям интернета быстро отыскивать необходимую информацию. Новая технология была быстро коммерциализирована, сначала для рекламы, затем и для непосредственного совершения сделок. Уже в 1994 г. появился книготорговый сайт Amazon .com , в 1995 г. - интернет-аукцион Ebay . Тогда же, в 90-е гг., сложилась платежная и логистическая инфраструктура интернет-трансакций. В результате возникло большое число бизнесов, существующих исключительно в интернете - т.н. дот-комов. Завышенные ожидания в отношении таких бизнесов породили так называемый «пузырь дот-комов» - неоправданный рост курсов акций интернет-компаний. Этот «пузырь» закончился крахом 2000 г.

Бурное развитие технологии поставило перед экономической информатикой новые задачи. Во-первых, всепроникающий характер ИТ породил потребность в интегрированном описании роли ИТ в бизнесе. Основой такого описания стало понятия бизнес-процесса и цепи создания стоимости . Это обеспечило целостный взгляд на бизнес-процесс, особенно важный при изменении последнего.

Во-вторых, возник целый ряд новых классов приложений, решающих вновь возникшие задачи управления бизнесом. Это были, прежде всего, ERP -системы, ставшие дальнейшим развитием систем MRP II . В дополнение к ним были созданы системы управления взаимоотношениями с клиентами (CRM ), управления взаимоотношениями с поставщиками (SRM ) управления цепью поставок в целом (SCM ).

Возросшие вычислительные мощности, а также мощности по хранению данных сделали возможным создание специализированных аналитических систем, обрабатывающих данные в реальном времени (OLAP ). Наконец, возникновение электронного бизнеса породило новый обширный класс систем, опосредующих электронные трансакции - B 2B , B 2C и др.

В-третьих, произошло дальнейшее усложнение задач ИТ-служб на предприятиях. Важную помощь в этих условиях могла оказать типовая модель бизнес-процессов ИТ-службы, содержащая основные задачи последней и хорошо зарекомендовавшие себя подходы к их решению. Такой моделью стала модель ITIL , первая версия которой появилась на рубеже 80-х - 90-х гг. Широкое признание модели в бизнесе и государственных структурах привело к быстрому совершенствованию библиотеки, и на рубеже 90х - 2000-х гг. вышла её вторая версия, а в 2007 г. - третья. В настоящее время библиотека ITIL стала de facto стандартом управления ИС в Европе. Еще одним ответом на усложнение задач ИТ-службы стал аутсорсинг ИС - передача всех или части функций обслуживания ИС на исполнение внешнему поставщику. Аутсорсинг стал популярным решением проблем ИТ-службы именно в 90-е гг.

Наконец, в 90-е гг. разрешился парадокс производительности ИТ. Целый ряд исследователей показал, что при наличии комплементарных изменений в бизнес-процессах фирмы вложения в ИС оказывают значимое положительное влияние на производительность. Одновременно был обнаружен значительный вклад вложений в ИС в капитализацию фирмы на фондовом рынке.

Современный этап развития ИС принес новые достижения. Одним из важнейших стала технология интеграции бизнес-приложений СОА, впервые позволившая обеспечить устойчивое и эффективное взаимодействие приложений различных поставщиков. Возможно, еще более важным продвижением стали т.н. «облачные вычисления», представляющие собой предоставление ИТ-сервисов через интернет, в котором детали ИТ-инфраструктуры скрыты от конечных пользователей услуги. Это устраняет большинство проблем совместимости приложений и их интеграции между собой. Облачные вычисления устраняют специфические требования, выдвигаемые рядом ИТ-сервисов к ИТ-инфраструктуре клиента, что позволяет получать ИТ-сервисы так же просто, как электропитание из электрической розетки. Важным фактором развития ИТ стало также широкое распространение ПО с открытым кодом, представляющее собой не столько техническое новшество, сколько альтернативную модель авторского права.

Параллельно развитию технологий развивались управление ИС и экономический анализ последних. В управлении основным направлением развития стало углубление аутсорсинга, переход от аутсорсинга отдельных функций сопровождения ИС к аутсорсингу бизнес-процессов в целом. Аутсорсинг повлиял и на развитие модели ITIL , которая в своей третьей версии ориентирована не столько на ИТ-службы предприятий, как ранее, сколько на провайдеров услуг аутсорсинга.

В экономике ИС одним из важнейших направлений стала экономика авторских прав. Развитие рынка информационных благ, с одной стороны, резко расширила объем потребления последних, с другой - ограничило права пользователей на потребление последнего. Жесткие ограничения, налагаемые на пользователей информационных благ, породили широкое обсуждение экономики авторского права с точки зрения баланса между стимулами для инноваций и монопольными правами производителей. Это углубило понимание института авторского права, но пока не привело к практическим рекомендациям в этой области.

Реальной альтернативой институту авторского права в области ПО стало ПО с открытым кодом. Лицензия GPL предоставляет пользователю четыре свободы: свобода использования ПО, свобода изучения ПО и изменения исходного кода, свобода распространения копий ПО и свобода распространения измененного ПО. Основное ограничение, налагаемое GPL , в том, что ПО, полученное в рамках GPL , должно и в дальнейшем распространяться на условиях GPL .

По особому пути развивалась экономическая информатика в СССР. Плановое хозяйство, с одной стороны, создавало целый ряд стимулов к внедрению информационных технологий и систем в народное хозяйство, с другой, накладывало крайне жёсткие ограничения на их использование. В результате внедрение информационных технологий и систем в народное хозяйство СССР носило ограниченный и непоследовательный характер, хотя и привело к целому ряду крупных успехов.

Первым успехом стало само создание отрасли вычислительной техники в СССР, которая несколько десятилетий оставалась на уровне передовых стран Запада. Среди создателей советской вычислительной техники следует упомянуть в первую очередь С.А. Лебедева, И.С.Брука, Б.И.Рамеева, В.М. Глушкова и Г.П.Лопато, создавших самостоятельные конструкторские школы разработки компьютеров и наладивших их серийное производство.

Развитие производства ЭВМ поставило вопрос об их использовании в народном хозяйстве. Уже в 1959 году А.И. Берг, А.И.Китов и А.А. Ляпунов в докладе «О возможностях автоматизации управления народным хозяйством» поставили вопрос об использовании компьютеров в управлении народным хозяйством. Однако технические возможности компьютеров того времени не позволяли широкомасштабного использования компьютеров в планировании - основной в то время функции управления народным хозяйством. Серьезные попытки такой автоматизации были предприняты лишь в 70-е гг. в виде попытки создания системы АСУ (автоматизированных систем управления) с ОГАС (Общегосударственной Автоматизированной системой сбора, хранения и обработки информации) на верхнем уровне.

Крупномасштабные инвестиции в АСУ не принесли ожидаемой отдачи. Использование АСУ натолкнулось на проблемы качества информации и оказалось несовместимым с реальными механизмами хозяйствования, функционирующими в социалистической экономике. В условиях шоковых экономических реформ 1990-х гг. разработчики АСУ не смогли приспособить их к новым экономическим условиям, в результате чего АСУ быстро сошли на нет. В современной России экономическая информатика не получила существенного развития, а имеющиеся работы носят фрагментарный характер.

Структура экономической информатики

В современной экономической информатике можно выделить следующие основные направления.

Прежде всего, это анализ и моделирование бизнес-процессов. Это - сложная и масштабная деятельность с учетом специфики отраслей и стран. Важной её частью является описание и анализ вновь возникших бизнес-процессов и моделей бизнеса. Сегодня такие модели основаны на все более широком использовании ИТ. Особенностью последних десятилетий стали сквозные бизнес-процессы, охватывающие целый ряд взаимосвязанных предприятий, объединенных, прежде всего, при посредстве ИС .

Сложность и, в то же время, динамизм современных ИС требуют особого внимания к проблемам архитектуры ИС . Именно своевременное и точное решение проблем архитектуры позволяет обеспечивать высокое качество ИТ-сервисов даже в условиях крупномасштабных изменений. Экономическая информатика создает теоретическую и методическую базу для таких решений. Сегодня в архитектуре ИС можно выделить несколько тенденций:

    Обеспечение интеграции ИТ-архитектуры и архитектурой бизнеса и организации;

    Построение ИТ-архитектуры организации на основе сети взаимосвязанных поставщиков услуг, осуществляющих аутсорсинг бизнес-процессов;

    Корпоративные данные оказываются в центре современной ИТ-архитектуры, особенно в условиях развитого аутсорсинга;

    Повышение гибкости ИТ-сервисов и простоты доступа к ним конечных пользователей, прежде всего, на основе облачных вычислений.

Отдельное направление экономической информатики - развитие управления ИС . Сегодня в этой области доминирует модель ITIL , однако вопрос о границах её применения остается нерешенным. Важным направлением исследований является также исследование аутсорсинга, критериев его успеха и путей достижения такового. Наконец, в современных условиях особую важность приобретает измерение и обеспечение экономической эффективности ИС , которое мы подробнее рассмотрим ниже.

Хотя «парадокс производительности» давно разрешен, исследования экономической эффективности ИС по-прежнему составляют важную часть экономической информатики. Сегодня основные направления повышения эффективности ИС уже намечены, это решение реальных задач бизнеса средствами ИТ, изменение бизнес-процессов, нацеленное на раскрытие потенциала ИТ, повышение квалификации персонала. Наряду с этим, ИС позволяют изменить портфель продуктов и услуг фирмы, сделать его более гибким и диверсифицированным.

Наконец, все большая ориентация на покупные компоненты ИС и покупные услуги, увеличивает значение рынка информационных благ. Изучение этого рынка методами экономической информатики имеет все большее значение для данной науки.

Неразрешенные проблемы и приоритетные направления

Несмотря на целый ряд успехов, сегодня в экономической информатике остается целый ряд нерешенных проблем. Вот важнейшие из них:

  • От чего зависит успех ИС в организации? Несмотря на развитые рекомендации по разработке и внедрению ИС , проекты разработки и внедрения ИС заканчиваются неудачей в 30-50% случаев по разным оценкам.
  • Как оценивать эффективность ИС в конкретных ситуациях? Исследования эффективности ИС пока не привели к разработке практически ценных методик, позволяющих оценивать эффективность конкретных проектов в этой области.
  • Всегда ли передовой опыт является передовым? Ряд исследований показывает, что наблюдаемые сегодня организации принадлежат к нескольким различным типам (в оригинальной авторской терминологии - конфигурациям). Вероятно, разные конфигурации требуют различных ИС и различных подходов к их внедрению.
  • Насколько разумно сегодняшнее авторское право? Ограничения, налагаемые современным авторским правом на конечных пользователей, рассматриваются как все более обременительные, к тому же, появляются вполне разумные альтернативы.
  • Рекомендуемая литература

    Ф. Уэбстер. Теории информационного общества.

    М. Портер. Конкуренция (сборник статей).

    Г. Минцберг. Структура в кулаке.

    Г.Минцберг. Менеджмент: природа и структура организаций глазами гуру.

    Хесус Уэрта де Сото. Социализм, экономический расчет и предпринимательская функция.

    Э.Фуруботн, Р. Рихтер, Институты и экономическая теория: достижения новой институциональной экономической теории.

    Б. Гладких. Информатика от абака до интернета. Включая сюда компьютеры, серверы, периферийное оборудование, оборудование хранения данных и т.д. Именно в 19 веке были изобретены хранение информации на перфокартах, «аналитическая машина» Чарльза Бэббиджа и, наконец, табулятор - вычислительное устройство, обрабатывающее данные, хранящиеся на перфокартах

  • Министерство образования Украины

    Киевский национальный экономический университет

    «Экономическая информатика»

    Введение.

    Всегда и во всех сферах своей деятельности человек принимал решения. Важная область принятия решений связана с производством. Чем больше объем производства, тем труднее принять решение и, следовательно, легче допустить ошибку. Возникает естественный вопрос: нельзя ли во избежание таких ошибок использовать ЭВМ? Ответ на этот вопрос дает наука, называемая кибернетика.

    Кибернетика (произошло от греческого "kybernetike" – искусство управления) - наука об общих законах получения, хранения, передачи и переработки информации.

    Важнейшей отраслью кибернетики является экономическая кибернетика - наука, занимающаяся приложением идей и методов кибернетики к экономическим системам.

    Экономическая кибернетика использует совокупность методов исследования процессов управления в экономике, включая экономико- математические методы.

    В настоящее время применение ЭВМ в управлении производством достигло больших масштабов. Однако, в большинстве случаев с помощью ЭВМ решают так называемые рутинные задачи, то есть задачи, связанные с обработкой различных данных, которые до применения ЭВМ решались так же, но вручную. Другой класс задач, которые могут быть решены с помощью ЭВМ - это задачи принятия решений. Чтобы использовать ЭВМ для принятия решений, необходимо составить математическую модель.

    Так ли необходимо применение ЭВМ при принятии решений?

    Возможности человека достаточно разнообразны. Если их упорядочить, то можно выделить два вида: физические и умственные. Так уж устроен человек, что того, чем он обладает, ему мало. И начинается бесконечный процесс увеличения его возможностей. Чтобы больше поднять, появляется одно из первых изобретений - рычаг, чтобы легче перемещать груз - колесо. В этих орудиях пока еще используется только энергия самого человека. Со временем начинается применение внешних источников энергии: пороха, пара, электричества, атомной энергии. Невозможно оценить, насколько используемая энергия внешних источников превышает сегодня физические возможности человека. Что же касается умственных способностей человека, то, как говорится, каждый недоволен своим состоянием, но доволен своим умом. А можно ли сделать человека умнее, чем он есть? Чтобы ответить на этот вопрос, следует уточнить, что вся интеллектуальная деятельность человека может быть подразделена на формализуемую и неформализуемую.

    Формализуемой называют такую деятельность, которую выполняют по определенным правилам. Например, выполнение расчетов, поиск в справочниках, графические работы, несомненно могут быть поручены ЭВМ. И как все, что может делать ЭВМ, она это делает лучше, то есть быстрее и качественнее, чем человек.

    Неформализуемой называют такую деятельность, которая происходит с применением каких-либо неизвестных нам правил. Мышление, соображение, интуиция, здравый смысл - мы пока еще не знаем, что это такое, и естественно, все это нельзя поручить ЭВМ, хотя бы потому, что мы просто не знаем, что поручать, какую задачу поставить перед ЭВМ.

    Разновидностью умственной деятельности является принятие решений. Принято считать, что принятие решений относится к неформализуемой деятельности. Однако это не всегда так. С одной стороны, мы не знаем, как мы принимаем решение. И объяснение одних слов с помощью других типа "принимаем решение с помощью здравого смысла" ничего не дает. С другой стороны, значительное число задач принятия решений может быть формализовано. Одним из видов задач принятия решений, которые могут быть формализованы, являются задачи принятия оптимальных решений, или задачи оптимизации. Решение задачи оптимизации производится с помощью математических моделей и применения вычислительной техники.

    Современные ЭВМ отвечают самым высоким требованиям. Они способны выполнять миллионы операций в секунду, в их памяти могут быть все необходимые сведения, комбинация дисплей-клавиатура обеспечивает диалог человека и ЭВМ. Однако не следует смешивать успехи в создании ЭВМ с достижениями в области их применения. По сути, все что может ЭВМ - это по заданной человеком программе обеспечить преобразование исходных данных в результат. Надо четко себе представлять, что ЭВМ решения не принимает и принимать не может. Решение может принимать только человек-руководитель, наделенный для этого определенными правами. Но для грамотного руководителя ЭВМ является великолепным помощником, способным выработать и предложить набор самых различных вариантов решений. А из этого набора человек выберет тот вариант который с его точки зрения окажется более пригодным. Конечно, далеко не все задачи принятия решений можно решить с помощью ЭВМ. Тем не менее, даже если решение задачи на ЭВМ и не заканчивается полным успехом, то все равно оказывается полезным, так как способствует более глубокому пониманию этой задачи и более строгой ее постановке.

    Этапы решения.

    1. Выбор задачи

    2. Составление модели

    3. Составление алгоритма

    4. Составление программы

    5. Ввод исходных данных

    6. Анализ полученного решения



    Чтобы человеку принять решение без ЭВМ, зачастую ничего не надо. Подумал и решил. Человек, хорошо или плохо, решает все возникающие перед ним задачи. Правда никаких гарантий правильности при этом нет. ЭВМ же никаких решений не принимает, а только помогает найти варианты решений. Данный процесс состоит из следующих этапов:

    1. Выбор задачи.

    Решение задачи, особенно достаточно сложной - достаточно трудное дело, требующее много времени. И если задача выбрана неудачно, то это может привести к потере времени и разочарованию в применении ЭВМ для принятия решений. Каким же основным требованиям должна удовлетворять задача?

    A. Должно существовать как минимум один вариант ее решения, ведь если вариантов решения нет, значит выбирать не из чего.

    B. Надо четко знать, в каком смысле искомое решение должно быть наилучшим, ведь если мы не знаем чего хотим, ЭВМ помочь нам выбрать наилучшее решение не сможет.

    Выбор задачи завершается ее содержательной постановкой. Необходимо четко сформулировать задачу на обычном языке, выделить цель исследования, указать ограничения, поставить основные вопросы на которые мы хотим получить ответы в результате решения задачи.

    Здесь следует выделить наиболее существенные черты экономического объекта, важнейшие зависимости, которые мы хотим учесть при построении модели. Формируются некоторые гипотезы развития объекта исследования, изучаются выделенные зависимости и соотношения. Когда выбирается задача и производится ее содержательная постановка, приходится иметь дело со специалистами в предметной области (инженерами, технологами, конструкторами и т.д.). Эти специалисты, как правило, прекрасно знают свой предмет, но не всегда имеют представление о том, что требуется для решения задачи на ЭВМ. Поэтому, содержательная постановка задачи зачастую оказывается перенасыщенной сведениями, которые совершенно излишни для работы на ЭВМ.

    2. Составление модели

    Под экономико-математической моделью понимается математическое описание исследуемого экономического объекта или процесса, при котором экономические закономерности выражены в абстрактном виде с помощью математических соотношений.

    Основные принципы составления модели сводятся к следующим двум концепциям:

    1. При формулировании задачи необходимо достаточно широко охватить моделируемое явление. В противном случае модель не даст глобального оптимума и не будет отражать суть дела. Опасность состоит в том, что оптимизация одной части может осуществляться за счет других и в ущерб общей организации.

    2. Модель должна быть настолько проста, насколько это возможно. Модель должна быть такова, чтобы ее можно было оценить, проверить и понять, а результаты полученные из модели должны быть ясны как ее создателю, так и лицу, принимающему решение.

    На практике эти концепции часто вступают в конфликт, прежде всего из-за того, что в сбор и ввод данных, проверку ошибок и интерпретацию результатов включается человеческий элемент, что ограничивает размеры модели, которая может быть проанализирована удовлетворительно. Размеры модели используются как лимитирующий фактор, и если мы хотим увеличить широту охвата, то приходится уменьшать детализацию и наоборот.

    Введем понятие иерархии моделей, где широта охвата увеличивается, а детализация уменьшается по мере того, как мы переходим на более высокие уровни иерархии. На более высоких уровнях в свою очередь формируются ограничения и цели для более низких уровней.

    При построении модели необходимо учитывать также и временной аспект: горизонт планирования в основном увеличивается с ростом иерархии. Если модель долгосрочного планирования всей корпорации может содержать мало каждодневных текущих деталей то модель планирования производства отдельного подразделения состоит в основном из таких деталей.

    При формулировании задачи необходимо учитывать следующие три аспекта:

    1. Исследуемые факторы: Цели исследования определены довольно свободно и в большой степени зависят от того, что включено в модель. В этом отношении Легче инженерам, так как исследуемые факторы у них обычно стандартны, а целевая функция выражается в терминах максимума дохода, минимума затрат или, возможно, минимума потребления какого-нибудь ресурса. В то же время социологи, к примеру, обычно задаются целью "общественной полезности" или в этом роде и оказываются в сложном положении, когда им приходится приписывать определенную "полезность" различным действиям, выражая ее в математической форме.

    2. Физические границы: Пространственные аспекты исследования требуют детального рассмотрения. Если производство сосредоточено более чем в одной точке, то необходимо учесть в модели соответствующие распределительные процессы. Эти процессы могут включать складирование, транспортировку, а также задачи календарного планирования загрузки оборудования.

    3. Временные границы: Временные аспекты исследования приводят к серьезной дилемме. Обычно горизонт планирования хорошо известен, но надо сделать выбор: либо моделировать систему в динамике, с тем, чтобы получить временные графики, либо моделировать статическое функционирование в определенный момент времени.

    Если моделируется динамический (многоэтапный) процесс, то размеры модели увеличиваются соответственно числу рассматриваемых периодов времени (этапов). Такие модели обычно идейно просты, так что основная трудность заключается скорее в возможности решить задачу на ЭВМ за приемлемое время, чем в умении интерпретировать большой объем выходных данных. с Зачастую бывает достаточно построить модель системы в какой-то заданный момент времени, например в фиксированный год, месяц, день, а затем повторять расчеты через определенные промежутки времени. Вообще, наличие ресурсов в динамической модели часто оценивается приближенно и определяется факторами, выходящими за рамки модели. Поэтому необходимо тщательно проанализировать, действительно ли необходимо знать зависимость от времени изменения характеристик модели, или тот же результат можно получить, повторяя статические расчеты для ряда различных фиксированных моментов.

    3. Составление алгоритма.

    Алгоритм - это конечный набор правил, позволяющих чисто механически решать любую конкретную задачу из некоторого класса однотипных задач. При этом подразумевается:

    ¨ исходные данные могут изменяться в определенных пределах: {массовость алгоритма}

    ¨ процесс применения правил к исходным данным (путь решения задачи) определен однозначно: {детерминированность алгоритма}

    ¨ на каждом шаге процесса применения правил известно, что считать результатом этого процесса: {результативность алгоритма}

    Если модель описывает зависимость между исходными данными и искомыми величинами, то алгоритм представляет собой последовательность действий, которые надо выполнить, чтобы от исходных данных перейти к искомым величинам.

    Удобной формой записи алгоритма является блок схема. Она не только достаточно наглядно описывает алгоритм, но и является основой для составления программы. Каждый класс математических моделей имеет свой метод решения, который реализуется в алгоритме. Поэтому очень важной является классификация задач по виду математической модели. При таком подходе задачи, различные по содержанию, можно решать с помощью одного и того же алгоритма. Алгоритмы задач принятия решений, как правило, настолько сложны, что без применения ЭВМ реализовать их практически невозможно.

    4. Составление программы.

    Алгоритм записывают с помощью обычных математических символов. Для того, чтобы он мог быть прочитан ЭВМ необходимо составить программу. Программа - это описание алгоритма решения задачи, заданное на языке ЭВМ. Алгоритмы и программы объединяются понятием "математическое обеспечение". В настоящее время затраты на математическое обеспечение составляют примерно полторы стоимости ЭВМ, и постоянно происходит дальнейшее относительное удорожание математического обеспечения. Уже сегодня предметом приобретения является именно математическое обеспечение, а сама ЭВМ лишь тарой, упаковкой для него.

    Далеко не для каждой задачи необходимо составлять индивидуальную программу. На сегодняшний день созданы мощные современные программные средства - пакеты прикладных программ (ППП).

    ППП - это объединение модели, алгоритма и программы. Зачастую, к задаче можно подобрать готовый пакет, который прекрасно работает, решает многие задач, среди которых можно найти и наши. При таком подходе многие задачи будут решены достаточно быстро, ведь не надо заниматься программированием.

    Если нельзя использовать ППП для решения задачи без изменения его или модели, то нужно либо модель подогнать под вход ППП, либо доработать вход ППП, чтобы в него можно было ввести модель.

    Такую процедуру называют адаптацией. Если подходящий ППП находится в памяти ЭВМ, то работа пользователя заключается в том, чтобы ввести необходимые искомые данные и получить требуемый результат.

    5. Ввод исходных данных.

    Прежде чем ввести исходные данные в ЭВМ, их, естественно, необходимо собрать. Причем не все имеющиеся на производстве исходные данные, как это часто пытаются делать, а лишь те, которые входят в математическую модель. Следовательно, сбор исходных данных не только целесообразно, но и необходимо производить лишь после того, как будет известна математическая модель. Имея программу и вводя в ЭВМ исходные данные, мы получим решение задачи.

    6. Анализ полученного решения

    К сожалению достаточно часто математическое моделирование смешивают с одноразовым решением конкретной задачи с начальными, зачастую недостоверными данными. Для успешного управления сложными объектами необходимо постоянно перестраивать модель на ЭВМ, корректируя исходные данные с учетом изменившейся обстановки. Нецелесообразно тратить время и средства на составление математической модели, чтобы по ней выполнить один единственный расчет. Экономико-математическая модель является прекрасным средством получения ответов на широкий круг вопросов, возникающих при планировании, проектировании и в ходе производства. ЭВМ может стать надежным помощником при принятии каждодневных решений, возникающих в ходе оперативного управления производством.

    ОПИСАТЕЛЬНЫЕ ОГРАНИЧЕНИЯ

    Эти ограничения описывают функционирование исследуемой системы. Они представляют особую группу балансовых уравнений, связанных с характеристиками отдельных блоков, такими как масса, энергия, затраты. Тот факт, что в модели линейного программирования балансовые уравнения должны быть линейными, исключает возможность представления таких принципиально нелинейных зависимостей, как сложные химические реакции. Однако те изменения условий функционирования, которые допускают линейное описание (хотя бы приближенно) могут быть учтены в модели. Балансовые соотношения могут быть введены для какой-то законченной части блок-схемы. В статических (одноэтапных) моделях такие соотношения можно

    представить в виде:

    Вход + выход = 0

    Динамический (многоэтапный) процесс описывается соотношениями:

    Вход + выход + накопления = 0,

    где под накоплениями понимается чистый прирост за рассматриваемый период.

    ОГРАНИЧЕНИЕ НА РЕСУРСЫ И КОНЕЧНОЕ ПОТРЕБЛЕНИЕ

    С этими ограничениями ситуация довольно ясная. В самом простом виде ограничения на ресурсы - это ограничения сверху на переменные, представляющие расход ресурсов, а ограничения на конечное потребление продуктов - это ограничения снизу на переменные, представляющие производство продукта. Ограничения на ресурсы имеют следующий вид:

    A i1 X 1 + ... + A ij X j + ... + A in X n Bi,

    где A ij - расход i-го ресурса на единицу X j , j = 1 ... n, а Bi - общий объем имеющегося ресурса.

    УСЛОВИЯ, НАЛАГАЕМЫЕ ИЗВНЕ

    ОПРЕДЕЛЕНИЕ ЦЕЛЕВОЙ ФУНКЦИИ

    Целевая функция модели обычно состоит из следующих компонент:

    1) Стоимость произведенного продукта.

    2) Капиталовложения в здания и оборудование.

    3) Стоимость ресурсов.

    4) Эксплуатационные затраты и затраты на ремонт оборудования.

    Классификация экономико-математических моделей

    Важным этапом изучения явлений предметов процессов является их классификация, выступающая как система соподчиненных классов объектов, используемая как средство для установления связей между этими классами объектов. Основой классификации являются существенные признаки объектов. Поскольку признаков может быть очень много то и выполненные классификации могут значительно отличаться друг от друга. Любая классификация должна преследовать достижение поставленных целей.

    Выбор цели классификации определяет набор тех признаков, по которым будут классифицироваться объекты, подлежащие систематизации. Цель нашей классификации - показать, что задачи оптимизации, совершенно различные по своему содержанию, можно решить на ЭВМ с помощью нескольких типов существующего программного обеспечения.

    Приведем несколько примеров классификационных признаков:

    1. Область применения

    3. Класс математической модели

    Наиболее распространенными задачами оптимизации возникающими в экономике являются задачи линейного программирования. Такая их распространенность объясняется следующим:

    1) С их помощью решают задачи распределения ресурсов, к которым

    сводится очень большое число самых различных задач

    2) Разработаны надежные методы их решения, которые реализованы в поставляемом программном обеспечении

    3) Ряд более сложных задач сводится к задачам линейного программирования

    Математическое моделирование в управлении и планировании

    Один из мощных инструментов которым располагают люди, ответственные за управление сложными системами - моделирование. Модель является представлением реального объекта, системы или понятия в некоторой форме, отличной от формы их фактического реального существования. Обычно модель служит средством, помогающим в объяснении, понимании или совершенствовании. Анализ математических моделей дает в руки менеджеров и других руководителей эффективный инструмент, который может использоваться для предсказания поведения систем и сравнения получаемых результатов. Моделирование позволяет логическим путем прогнозировать последствия альтернативных действий и достаточно уверенно показывает какому из них следует отдать предпочтение.

    Предприятие располагает некоторыми видами ресурсов, но общие запасы ресурсов ограничены. Поэтому возникает важная задача: выбор оптимального варианта, обеспечивающего достижение цели с минимальными затратами ресурсов. Таким образом эффективное руководство производством подразумевает такую организацию процесса, при которой не только достигается цель, но и получается экстремальное (MIN,MAX) значение некоторого критерия эффективности:

    К = F(X1,X2,...,Xn) -> MIN(MAX)

    Функция К является математическим выражением результата действия, направленного на достижение поставленной цели, и поэтому ее называют целевой функцией.

    Функционирование сложной производственной системы всегда определяется большим числом параметров. Для получения оптимального решения часть этих параметров нужно обратить в максимум, а другие в минимум. Возникает вопрос: существует ли вообще такое решение, которое наилучшим образом удовлетворяет всем требованиям сразу? Можно уверенно ответить - нет. На практике решение, при котором какой-либо показатель имеет максимум, как правило, не обращает другие показатели ни в максимум ни в минимум. Поэтому выражения типа: производить продукцию наивысшего качества с наименьшими затратами - это просто торжественная фраза по сути неверная. Правильно было бы сказать: получить продукцию наивысшего качества при той же стоимости, или снизить затраты на производство продукции не снижая ее качества, хотя такие выражения звучат менее красиво, но зато они четко определяют цели. Выбор цели и формулирование критерия ее достижения, то есть целевой функции, представляют собой труднейшую проблему измерения и сравнения разнородных переменных, некоторые из которых в принципе несоизмеримы друг с другом: например безопасность и стоимость, или качество и простота. Но именно такие социальные, этические и психологические понятия часто выступают как факторы мотивации при определении цели и критерия оптимальности. В реальных задачах управления производством нужно учитывать то, что некоторые критерии имеют большую важность чем другие. Такие критерии можно ранжировать, то есть устанавливать их относительную значимость и приоритет. В подобных условиях оптимальным приходится считать такое решение, при котором критерии имеющие наибольший приоритет получают максимальные значения. Предельным случаем такого подхода является принцип выделения главного критерия. При этом один какой-то критерий принимается в качестве основного, например прочность стали, калорийность продукта и т.д. По этому критерию производится оптимизация, к остальным предъявляется только одно условие, чтобы они были не меньше каких-то заданных значений. Между ранжированными параметрами нельзя проводить обычные арифметические операции, возможно лишь установление их иерархии ценностей и шкалы приоритетов, что является существенным отличием от моделирования в естественных науках.

    При проектировании сложных технических систем, при управлении крупным производством или руководстве военными действиями, то есть в ситуациях где необходимо принимать ответственные решения, большое значение имеет практический опыт, дающий возможность выделить наиболее существенные факторы, охватить ситуацию в целом и выбрать оптимальный путь для достижения поставленной цели. Опыт помогает также найти аналогичные случаи в прошлом и по возможности избежать ошибочных действий. Под опытом подразумевается не только собственная практика лица, принимающего решение но и чужой опыт, который описан в книгах, обобщен в инструкциях, рекомендациях и других руководящих материалах. Естественно, когда решение уже апробировано, то есть известно какое именно решение наилучшим образом удовлетворяет поставленным целям - проблемы оптимального управления не существует. Однако на самом деле практически никогда не бывает совершенно одинаковых ситуаций, поэтому принимать решения и осуществлять управление всегда приходится в условиях неполной информации. В таких случаях недостающую информацию пытаются получить используя догадки, предположения, результаты научных исследований и особенно изучение на моделях. Научно обоснованная теория управления во многом представляет собой набор методов пополнения недостающей информации о том как поведет себя объект управления при выбранном воздействии.

    Стремление получить как можно больше информации об управляемых объектах и процессах включая и особенности их будущего поведения может быть удовлетворено путем исследования интересующих нас свойств на моделях. Модель дает способ представления реального объекта, который позволяет легко и с малыми затратами ресурсов исследовать некоторые его свойства. Только модель позволяет исследовать не все свойства сразу, а лишь те из них, которые наиболее существенны при данном рассмотрении. Поэтому модели позволяют сформировать упрощенное представление о системе и получить нужные результаты проще и быстрее чем при изучении самой системы. Модель производственной системы в первую очередь создается в сознании работника осуществляющего управление. На этой модели он мысленно пытается представить все особенности самой системы и детали ее поведения, предвидеть все трудности и предусмотреть все критические ситуации, которые могут возникнуть в различных режимах эксплуатации. Он делает логические заключения, выполняет чертежи планы и расчеты. Сложность современных технических систем и производственных процессов приводит к тому, что для их изучения приходится использовать различные виды моделей.

    Простейшими являются масштабные модели в которых натурные значения всех размеров умножаются на постоянную величину - масштаб моделирования. Большие объекты представляются в уменьшенном виде, а малые в увеличенном.

    В аналоговых моделях исследуемые процессы изучаются не непосредственно а по аналогичным явлениям, то есть по процессам имеющим иную физическую природу, но которые описываются такими же математическими соотношениями. Для такого моделирования используются аналогии между механическими, тепловыми, гидравлическими, электрическими и другими явлениями. Например колебания груза на пружине аналогичны колебаниям тока в электрическом контуре, также движение маятника аналогично колебаниям напряжения на выходе генератора переменного тока. Самым общим методом научных исследований является использование математического моделирования. Математической моделью описывает формальную зависимость между значениями параметров на входе моделируемого объекта или процесса и выходными параметрами. При математическом моделировании абстрагируются от конкретной физической природы объекта и происходящих в нем процессов и рассматривают только преобразование входных величин в выходные. Анализировать математические модели проще и быстрее, чем экспериментально определять поведение реального объекта в различных режимах работы. Кроме того анализ математической модели позволяет выделить наиболее существенные свойства данной системы, на которые надо обратить особое внимание при принятии решения. Дополнительное преимущество состоит в том, что при математическом моделировании не представляет труда испытать исследуемую систему в идеальных условиях или наоборот в экстремальных режимах, которые для реальных объектов или процессов требуют больших затрат или связаны с риском.

    В зависимости от того, какой информацией обладают руководитель и его

    сотрудники, подготавливающие решения, меняются и условия принятия решений и математические методы, применяемые для выработки рекомендаций.

    Сложность математического моделирования в условиях неопределенности зависит от того какова природа неизвестных факторов. По этому признаку задачи делятся на два класса.

    1) Стохастические задачи, когда неизвестные факторы представляют собой случайные величины, для которых известны законы распределения вероятностей и другие статистические характеристики.

    2) Неопределенные задачи, когда неизвестные факторы не могут быть описаны статистическими методами.

    Вот пример стохастической задачи:

    Мы решили организовать кафе. Какое количество посетителей придет в него за день нам неизвестно. Также неизвестно сколько времени будет продолжаться обслуживание каждого посетителя. Однако характеристики этих случайных величин могут быть получены статистическим путем. Показатель эффективности, зависящий от случайных величин также будет случайной величиной.

    В данном случае мы в качестве показателя эффективности берем не саму случайную величину, а ее среднее значение и выбираем такое решение при

    котором это среднее значение обращается в максимум или минимум.

    Заключение.

    Информатика играет важную роль в современной экономической науке, что привело к выделению отдельного направления развития науки – экономическая информатика. Это новое направление объединяет в себе экономику, математику и информатику, и помогает экономистам решать задачи оптимизации деятельности предприятий, принимать стратегически важные решения о развитии промышленности и управлять производственным процессом.

    Разработанная программная база основывается на математических моделях экономических процессов и предоставляет гибкий и надежный механизм предсказания экономического эффекта управленческих решений. С помочью ЭВМ быстро решаются аналитические задачи, решение которых не под силу человеку.

    В последнее время компьютер стал неотъемлемой частью рабочего места управленца и экономиста.

    Список литературы.

    1. Фигурнов. ПК для начинающих. М.:ВШ – 1995.

    2. Осейко Н. Бухгалтерский учет с помощью ПК. Третье издание. К.: СофтАрт, 1996.

    3. Информационные системы в экономике. М.: ВШ – 1996.

    4. Richard B. Chase, Nicholas J. Aquilano. Production And Operations Management: A Life Cycle Approach. Fifth Edition. Boston, MA: Irwin – 1989.

    5. Вентцель Е.С. Исследование операций. М: ВШ – 1983

    6. Мину Математическое программирование М: Радио и связь 1978

    Экономическая информатика

    Словосочетание экономическая информация (ЭИ) вошло в обиход в 60-х годах с внедрением средств вычислительной техники в сферу управления народным хозяйством. Ее исследование позволило, во-первых, классифицировать информацию (по месту возникновения (входящая, исходящая), по участию в процессе обработки/хранения (исходная, производная, хранимая без обработки, промежуточная, результатная), по отношению к функциям управления (плановая, прогнозная, нормативная, конструкторско-технологическая, учетная, финансовая и др.) и пр.), а во-вторых, выявить ряд особенностей, влияющих на организацию автоматизированной обработки:

    • 1. ЭИ специфична по форме представления. Она непременно отражается на материальных носителях в виде первичных и сводных документов, для повышения достоверности передача и обработка ведется лишь юридически оформленной информации, то есть при наличии подписи на традиционных или электронных документах (требует специальных средств и организационных мероприятий).
    • 2. ЭИ объемна. Качественное управление экономическими процессами невозможно без детальной информации о них. Совершенствование управления, возрастание объемов производства в материальной и нематериальной сферах сопровождается увеличением сопутствующих ему информационных потоков (требует возрастающей производительности средств обработки и каналов связи).

    З.ЭИ циклично. Для большинства производственных и хозяйственных процессов характерна повторяемость составляющих их стадий и информации, отражающей эти процессы (однажды созданные программы обработки информации могут многократно использоваться и тиражироваться).

    4. ЭИ отражает результаты производственно-хозяйственной деятельности с помощью системы натуральных и стоимостных показателей. При этом используются количественные величины, цифровые значения (их удобно обрабатывать).

    З.ЭИ специфична по способам обработки. В процессе обработки преобладают арифметические и, в первую очередь, логические (например, сортировка или отбор) операции, а результаты представляются в виде текстовых документов, таблиц, диаграмм и графиков (дает возможность ограничиться определенным кругом проблемно ориентированных программных средств).

    Какой бы сложной и "разумной" ни была автоматизированная система обработки данных, ее применение бесполезно, если входные данные неточно отображают свойства предметной области. Роль и значение первичной информации переоценить невозможно. Поэтому любому экономисту важно знать технологию работы с первичной информацией.

    Для регистрации любой хозяйственной операции, то есть для получения первичных (исходных) сведений о процессах, протекающих в объекте управления, необходимо выполнить такие действия, как идентификация, привязка ко времени, измерение.

    Идентификация -- это действие, процесс, в результате которого устанавливают (узнают, определяют) идентификатор объекта. Объектом здесь может быть и субъект труда (кто выполнил операцию), и объект труда (какая деталь обработана), и объект передачи (что передано), и субъект передачи (от кого, кому), и пр.

    Идентификатором называется комбинация признаков, сопоставленная с объектом идентификации и однозначно отличающая его от любого другого объекта (в данной информационной системе в пределах данного класса объектов). Другими словами, идентификатор - это уникальное имя объекта. Идентификатором может быть и цифровой код получателя, и признаки защиты денежного знака.

    В зависимости от конкретных обстоятельств идентифицировать требуется либо только вид объекта (например, модель холодильника, достоинство банкноты, сорт ткани), либо и вид, и экземпляр объекта (работник предприятия с его уникальным табельным номером, смаркард).

    Привязка ко времени (датирование) - действие, процесс, в результате которого фиксируется (документируется) время/дата (возможно, начало и завершение) выполнения операции.

    Измерение - это нахождение какой-нибудь мерой значения какой-либо величины. Способы, средства и единицы (штуки, килограммы, литры, рубли) измерения существенно зависят от вида, сущности объекта измерения. Объединяющим здесь является то, что именно в процессе измерения формируются первичные данные.

    Процесс получения первичных данных имеет ряд особенностей, которые необходимо иметь в виду при создании автоматизированной системы обработки информации.

    Прежде всего следует учитывать, что сбор данных есть обычный трудовой процесс, и он требует определенной квалификации и затрат сил, времени. Причем затрат не малых, так как операции сбора данных часто носят массовый характер. Кроме того, первичные данные должны точно описывать первичные хозяйственные операции. Иными словами, первичная информация должна быть достоверна. Но и этого мало. Она должна быть еще и своевременной.

    Структурные компоненты ЭИ. Экономические показатели описывают разные сущности как простые, так и сложные. Каждая сущность (предмет, процесс, явление, объект) имеет определенные свойства (вес, габариты, цена и пр.). Совокупность сведении, отражающих какую либо сущность, называют информационной совокупностью либо составной единицей информации. Обычно информационная совокупность имеет иерархическую структуру. Например, «Данные о поставщике» включают его «Ф.И.0.», «Адрес», «Номенклатуру товаров», «Условия поставки». «Адрес» предполагает «Почтовый индекс», «Город» и т.д.

    Степень детализации информационной совокупности конечна. Неделимая далее на смысловые единицы информационная совокупность получила название реквизит. При описании информационных систем пользуются его синонимами: слово, элемент данных, атрибут.

    Реквизиты (документов) - совокупность формальных элементов в составе сделки или документа, отсутствие которых лишает сделку или документ юридической силы; обязательные данные, предусмотренные действующими правилами или законами для документов, без которых документы не могут служить основанием для современных операций. Хотя реквизит является основным элементом экономической информации (дата, сумма, наименование и т.д.), он, взятый отдельно, не имеет экономического смысла. преобразование информация компьютер информационное общество

    Различают два вида реквизитов: реквизит-признак и реквизит-основание. Если реквизит описывает качественное свойство информации (время или место действия, Ф.И.0. исполнителя и ар.), то его называют реквизит-признак. Если же реквизит представляет количественную характеристику (объем продукции в штуках, цена в рублях и пр.), то его называют реквизит-основание.

    Сочетание одного реквизита-основания с одним или несколькими соответствующими ему реквизитами-признаками образует показатель. Показатель - качественно определенная величина, дающая количественную характеристику отображаемому объекту (предмету, процессу, явлению}, имеющая экономический смысл. Это информационная совокупность наименьшего состава, достаточная для образования самостоятельного сообщения или формирования документа. Например, информационная совокупность «пять пар женской обуви» состоит из реквизита-основания «пять» и трех реквизитов-признаков: «пара», «женская» и «обувь», имеет экономический смысл и поэтому является показателем. Совокупность логически связанных реквизитов, имеющая юридическую силу, называется документом (Документированная информация (документ) - зафиксированная на материальном носителе информация с реквизитами, позволяющими ее идентифицировать).

    Задачи информатики

    • - исследование информационных процессов любой природы;
    • - разработка информационной техники и создание новейшей технологии переработки информации на базе полученных результатов исследования информационных процессов;
    • - решение научных и инженерных проблем создания, внедрения и обеспечения эффективного использования компьютерной техники и технологии во всех сферах общественной жизни.

    Информатика существует не сама по себе, а является комплексной научно-технической дисциплиной, призванной создавать новые информационные техники и технологии для решения проблем в других областях. Она предоставляет методы и средства исследования другим областям, даже таким, где считается невозможным применение количественных методов из-за неформализуемости процессов и явлений. Особенно следует выделить в информатике методы математического моделирования и методы распознавания образов, практическая реализация которых стала возможной благодаря достижениям компьютерной техники.